Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Songwen Xie, ${ }^{\text {a }}$ Yuqing Hou, ${ }^{\text {a }}$ Cal Y. Meyers ${ }^{\text {a }}$ and Paul D. Robinson ${ }^{\text {b }}$

${ }^{\text {a }}$ Meyers Institute for Interdisciplinary Research in Organic and Medicinal Chemistry and the Department of Chemistry and Biochemistry, Southern Illinois University-4409, Carbondale, IL 62901, USA, and ${ }^{\text {b }}$ Department of Geology, Southern Illinois University-4324, Carbondale, IL 62901, USA

Correspondence e-mail: robinson@geo.siu.edu

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.038$
$w R$ factor $=0.113$
Data-to-parameter ratio $=14.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

(\pm)-5-Ethyl-endo-4-(4-methoxyphenyl)-2,2,anti-8-trimethyl-6-oxabicyclo[3.2.1]-octan-7-one, a bicyclic γ-lactone

The title bicyclic γ-lactone, $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$, (II), the thermodynamically favored lactone, was formed in the reaction of (\pm)-cis-2,6,6-trimethyl-trans-3-ethyl-4-oxocyclohexanecarboxylic acid with p-methoxyphenylmagnesium bromide, following prolonged treatment under acidic conditions. The kinetically favored isomeric (\pm) - δ-lactone is described in the preceding paper [Xie et al. (2003). Acta Cryst. E59, o403-o405]. In lactone (II), basically composed of an aromatic ring appended to a [3.2.1] bicyclic system, the $\mathrm{O}-\mathrm{C}(\mathrm{O})-\mathrm{C}$ group is asymmetric, its $\mathrm{O}-\mathrm{C}=\mathrm{O}$ angle being $120.80(15)^{\circ}$ and its $\mathrm{O}=\mathrm{C}-\mathrm{C}$ angle being $130.46(16)^{\circ}$.

Comment

We recently described the preparation, isolation and X-ray analysis of bicyclic δ-lactone (I) (Xie et al., 2003), which is the kinetically favored lactone formed in the reaction of (\pm)-cis-2,6,6-trimethyl-trans-3-ethyl-4-oxocyclohexanecarboxylic acid with p-methoxyphenylmagnesium bromide, followed by acidification with excess $3 N \mathrm{HCl}$, and the mixture worked up within an hour. When the acidified mixture was worked up after several days, the thermodynamically favored isomeric bicyclic γ-lactone, namely (\pm)-5-ethyl-endo-4-(4-methoxy-phenyl)-2,2,anti-8-trimethyl-6-oxabicyclo[3.2.1]octan-7-one, (II), was obtained as the major product. This reaction is described in detail in the preceding paper (Xie et al., 2003).

(I) racemic

(II) racemic

The structure and atom numbering of (II) are shown in Fig. 1. Lactone (II) is basically composed of an aromatic ring appended to a [3.2.1] bicyclic system. The $\mathrm{O}-\mathrm{C}(\mathrm{O})-\mathrm{C}$ group is asymmetric, its $\mathrm{O}-\mathrm{C}=\mathrm{O}$ angle being $120.80(15)^{\circ}$ and its $\mathrm{O}=\mathrm{C}-\mathrm{C}$ angle being $130.46(16)^{\circ}$. The four atoms comprising the lactone moiety, $\mathrm{C} 1 / \mathrm{C} 7 / \mathrm{O} 6 / \mathrm{C} 5$, are essentially coplanar, as evidenced by the torsion angle (Table 1), and the least-squares plane of this moiety is nearly perpendicular to the cyclohexane ring, the angle being $89.48(8)^{\circ}$. Geometric values of interest are given in Table 1.

Experimental

Compound (II) was prepared by the procedure described for (I) (Xie et al., 2003), except that the brown pasty solid obtained after the addition of 3 N HCl was left untouched for several days before being

Received 18 February 2003
Accepted 24 February 2003
Online 7 March 2003
Lactone precursors of prostate therapy agents. II.
treated with $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$. The resulting solid product was purified by recrystallization (ethyl acetate-hexane; m.p. $410.6-411.4 \mathrm{~K}$) and shown to be (II). GC-MS: $M^{+} 302$, w.w. calculated: 302; NMR $\left(\mathrm{CDCl}_{3}\right),{ }^{1} \mathrm{H}(300 \mathrm{MHz}): \delta 0.73(t, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(d, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}), 1.12(s, 3 \mathrm{H}), 1.18(s, 3 \mathrm{H}), 1.53(m, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(d, J=$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(d, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(s, 1 \mathrm{H}), 2.44(q, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.92(d d, J=7.8 \mathrm{~Hz}, 10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(s, 3 \mathrm{H}), 6.83(d, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.24(d, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}(75 \mathrm{MHz}): \delta 6.72,14.30,23.68,25.99$, $28.30,31.80,39.49,44.49,44.95,55.16,59.84,91.52,113.69,129.66$, 133.67 (2C), 158.33 (2C), 177.72.

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}$
$M_{r}=302.40$
Monoclinic, $P 2_{\mathrm{l}} / c$
$a=18.318(2) \AA$
$b=7.597(3) \AA$
$c=12.0935(13) \AA$
$\beta=91.860(10) \AA^{\circ}$
$V=1682.2(7) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.194 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \text { reflections } \\
& \theta=19.6-21.3^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Prism colorless } \\
& 0.48 \times 0.46 \times 0.27 \mathrm{~mm}
\end{aligned}
$$

Data collection
Rigaku AFC-5S diffractometer ω scans
Absorption correction: none
3069 measured reflections
2971 independent reflections
2145 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.008$

$$
\begin{aligned}
& \theta_{\max }=25.1^{\circ} \\
& h=0 \rightarrow 21 \\
& k=0 \rightarrow 9 \\
& l=-14 \rightarrow 14 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 100 \text { reflections } \\
& \text { intensity decay: } 1.6 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.113$
$S=1.01$
2971 reflections
204 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters (${ }^{\circ}$).

$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 1$	$130.46(16)$	$\mathrm{C} 5-\mathrm{O} 6-\mathrm{C} 7$	$108.97(11)$
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 6$	$108.74(14)$		
$\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 6-\mathrm{C} 5$	$3.11(17)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 14-\mathrm{C} 15$	$-62.6(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 14-\mathrm{C} 19$	$115.85(17)$		

The rotational orientations of the methyl H atoms were refined by the circular Fourier method available in SHELXL97 (Sheldrick,

Figure 1
The molecular structure and atom-numbering scheme for (II), with displacement ellipsoids at the 30% probability level.
1997). All H atoms were refined as riding, with $\mathrm{C}-\mathrm{H}$ distances ranging from 0.93 to $0.98 \AA$.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1996); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: PROCESS in TEXSAN (Molecular Structure Corporation, 1997); program(s) used to solve structure: SIR92 (Burla et al., 1989); program(s) used to refine structure: $L S$ in TEXSAN and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: TEXSAN, SHELXL97 and PLATON (Spek, 2000).

References

Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. \& Viterbo, D. (1989). J. Appl. Cryst. 22, 389-393.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Molecular Structure Corporation (1996). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA. (Present address: 9009 New Trails Drive, The Woodlands, TX 77381, USA.)
Molecular Structure Corporation (1997). TEXSAN. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA. (Present address: 9009 New Trails Drive, The Woodlands, TX 77381, USA.)
Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany.
Spek, A. L. (2000). PLATON. Utrecht University, The Netherlands.
Xie, S., Hou, Y., Meyers, C. Y. \& Robinson, P. D. (2003). Acta Cryst. E59, o403o405.

